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PREMISE OF THE STUDY: Untapped information about allele diversity within populations and 
individuals (i.e., heterozygosity) could improve phylogenetic resolution and accuracy. Many 
phylogenetic reconstructions ignore heterozygosity because it is difficult to assemble allele 
sequences and combine allele data across unlinked loci, and it is unclear how reconstruction 
methods accommodate variable sequences. We review the common methods of including 
heterozygosity in phylogenetic studies and present a novel method for assembling allele 
sequences from target- enriched Illumina sequencing libraries.

METHODS: We performed supermatrix phylogeny reconstruction and species tree estimation 
of Artocarpus based on three methods of accounting for heterozygous sequences: a 
consensus method based on de novo sequence assembly, the use of ambiguity characters, 
and a novel method for incorporating read information to phase alleles. We characterize 
the extent to which highly heterozygous sequences impeded phylogeny reconstruction 
and determine whether the use of allele sequences improves phylogenetic resolution or 
decreases topological uncertainty.

KEY RESULTS: We show here that it is possible to infer phased alleles from target- enriched 
Illumina libraries. We find that highly heterozygous sequences do not contribute 
disproportionately to poor phylogenetic resolution and that the use of allele sequences 
for phylogeny reconstruction does not have a clear effect on phylogenetic resolution or 
topological consistency.

CONCLUSIONS: We provide a framework for inferring phased alleles from target enrichment 
data and for assessing the contribution of allelic diversity to phylogenetic reconstruction. In 
our data set, the impact of allele phasing on phylogeny is minimal compared to the impact of 
using phylogenetic reconstruction methods that account for gene tree incongruence.

  KEY WORDS   alleles; HybSeq; incomplete lineage sorting; Moraceae; phylogenetics;  
phylogenomics; target enrichment.

Phylogenetic studies to reconstruct relationships among plant spe-
cies at all taxonomic scales increasingly rely on hundreds of low- 
copy nuclear genes. Such biparentally inherited and highly variable 
nuclear DNA is crucial to reconstruct relationships among closely 

related species, but these phylogenomic data sets introduce chal-
lenges to phylogenetic inference. For example, multiple methods for 
reconstructing species trees that consider the overall distribution of 
discordant gene trees have been developed (e.g., Ané et al., 2007; 
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Liu et al., 2008; Kubatko et al., 2009; Heled and Drummond, 2010); 
however, a major but mostly overlooked challenge to phylogenetic 
analysis of phylogenomic data sets is the treatment of heterozygo-
sity within and across intra- individual polymorphic loci. Although 
intra- individual polymorphisms are rich sources of phylogenetic 
information, most algorithms for phylogenetic inference treat intra- 
individual polymorphic sites as ambiguous or missing characters 
(Potts et al., 2014) that negatively impact phylogenetic resolution.

Standard practice in assembling sequencing reads from hete-
rozygous individuals for phylogenetic studies is to create a single 
consensus sequence per individual per locus (for exceptions, see 
Edwards et  al., 2008; Weisrock et  al., 2012; Kates et  al., 2017). In 
consensus sequences, heterozygous positions are either IUPAC 
ambiguity- coded or assigned a single nucleotide based on read fre-
quency. In the latter case, the resulting assembled locus is treated 
as homozygous and is most likely a mixed assembly of two alleles.

A major problem with ambiguity- coded consensus sequences 
is the handling of ambiguity codes in phylogenetic software. 
Ambiguity codes are interpreted as missing data by many programs 
(e.g., BEAST: Drummond and Rambaut, 2007; Mesquite: Maddison 
and Maddison, 2017; MrBayes: Ronquist and Huelsenbeck, 2003; 
PAUP*: Swofford, 2002). If ambiguity- coded positions are inter-
preted as missing data and phylogenetic information in a hete-
rozygous position of an alignment is lost, phylogenetic resolution 
may be lower among highly heterozygous sequences than among 
sequences with less genetic variation. Exceptions to this treat-
ment of ambiguity- coded positions as missing data are imple-
mented RAxML (Stamatakis, 2006), ape (Paradis et al., 2004), and 
SVDquartets (Chifman and Kubatko, 2014). These programs all 
have options to treat ambiguity- coded positions as informative, 
whether as polymorphisms (multiple states present; e.g., RAxML) 
or as true ambiguities (one of multiple, possible states present; e.g., 
ape). When ambiguity codes are treated as polymorphisms in like-
lihood models, the probability of substituting an “A” by “Y” equals 
that of “A” by “C” and/or “T”, which increases computation time 
and topological uncertainty (Felsenstein, 2003). The issues associ-
ated with ambiguity- coded bases are particularly problematic for 
data sets in which individuals are highly heterozygous but allelic 
diversity at the population, species, or genus level is low (Potts et al., 
2014).

The most biologically accurate way to include heterozygous 
genes in phylogenetic analysis is to reconstruct phylogenetic trees 
from allele sequences rather than from ambiguity- coded consensus 
sequences or chimeric consensus sequences. This process, known as 
“phasing,” joins variants across sites: for example, the “G” in a G/T 
single- nucleotide polymorphism (SNP) at one site may be associ-
ated with the “C” in a C/A SNP at another site. Two main methods 
of generating phased allele sequences for a single locus are avail-
able: amplicon sequencing, which can avoid the need for phasing 
altogether, and statistical phase inference. In amplicon sequencing 
(e.g., Uribe- Convers et al., 2016; Kates et al., 2017; Rothfels et al., 
2017), targeted genes are amplified in separate PCR reactions and 
pooled for sequencing. If sequencing read length is longer than the 
PCR product, reads will have identical start and end sites and may 
be separated into two or more alleles without phasing. However, 
amplicon sequencing requires a large amount of wet- lab prepara-
tion to produce a phylogenomic data set. Furthermore, to assemble 
two or more alleles that do not require phasing, PCR primers must 
target relatively short loci unless long read sequencing is used (e.g., 
Rothfels et al., 2017), and custom read assembly is required.

There are two main methods for inferring phase statistically: 
population- based phasing and read- backed phasing. The former 
requires a reference population of known variants, where the phase 
between alleles is already known, and is used almost exclusively for 
well- characterized model systems (e.g., Browning and Browning, 
2007). In read- backed phasing, reads are aligned to a reference se-
quence (a genome reference or the consensus sequence produced 
by de novo assembly), and variant sites (i.e., SNPs) are detected. If 
variants are connected by read data, they can be phased into short- 
range haplotypes (Fig.  1). This method is limited by read length 
and depth, especially in targeted sequencing projects. Intergenic 
regions with zero read coverage preclude phasing all variants into 
long- range haplotype blocks, and coverage within long introns may 
create multiple phaseable regions within each locus (Fig. 1).

Even if a data set of allele sequences is assembled, phylog-
eny reconstruction from two sequences per individual is also not 
straightforward. Common methods for phylogeny reconstruction 
from large numbers of nuclear genes include concatenation (i.e., 
supermatrix) and species tree estimation (e.g., ASTRAL: Mirarab 
and Warnow, 2015; *BEAST: Heled and Drummond, 2010). There 
is no clear way to concatenate allele sequences across loci without 
long- range haplotype phase information, and multiple studies have 
demonstrated that when a single allele for each heterozygous locus 
is selected and included in the concatenated data matrix, the selec-
tion of alleles can influence the results (see Edwards et  al., 2008; 
Weisrock et al., 2012). The influence of allele selection on the results 
occurs, in part, because when incomplete lineage sorting occurs, 
heterozygous alleles from one species may coalesce deeper in a par-
ticular gene phylogeny than that species’ divergence with its sister 
species (Weisrock et al., 2012).

Species tree methods may be used to address issues with discord-
ant gene histories due to deep coalescence (Knowles, 2009; Liu et al., 
2009a, 2015; Mirarab and Warnow, 2015). Because these methods 
allow for mapping of multiple “individuals” in gene trees or a se-
quence data matrix to a single “species” in the species tree, they in-
clude a practical way to use allele information: multiple alleles in 
gene trees are mapped to a single individual in the species tree.

Standard methods to assemble and analyze sequence data do not 
enable researchers to easily reconstruct the evolutionary history of 
alleles, so we do not know the extent to which phylogeny reconstruc-
tion from allele sequences could more effectively elucidate phyloge-
netic relationships that remain unknown. Here, we present a method 
for assembling an allele data set from Illumina (San Diego, CA, USA) 
sequencing reads and describe how to integrate this method into a 
recently developed tool for locus assembly from target enrichment 
data, HybPiper (Johnson et  al., 2016). We demonstrate how these 
data can be used for phylogeny reconstruction and compare phy-
logenetic hypotheses of Artocarpus J.R.Forst. & G.Forst (Moraceae) 
(breadfruit, jackfruit, and relatives) across allele and non- allele data 
sets using multiple methods of phylogenetic inference to determine 
whether the use of allele data influences phylogenetic results.

METHODS

Data sets

The Artocarpus data set includes target- enriched sequences of 23 
ingroup taxa and one outgroup taxon from the sister tribe Moreae 
(Steblus glaber Corner) (Table 1), originally described in detail by 
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FIGURE 1. Read- backed phasing of targeted loci from high- throughput sequences. (A) The HybPiper supercontig (concatenated exons with flanking 
introns) for one locus (gene250.pl) for Artocarpus lowii (MWL2). (B) Heterozygous sites identified by GATK are marked with vertical bars; the proportion 
of blue to red reflects the proportion of reads identified with each allele. (C) Histogram of sequencing depth (varies from 1× to 45×) following the 
removal of duplicate reads using Picard. (D) Read- backed phasing using WhatsHap separated reads into two phase blocks, separated by a gap of low 
depth. Variant sites in the left block (blue) can be phased with other sites within the block; similarly, variants in the right block (yellow) can be phased 
with respect to other sites in the yellow region. However, variants in the blue block cannot be phased with respect to variants in the yellow block, 
because they are not connected by sufficient read data. (E) Partial DNA sequence generated by haplonerate.py for the three data sets for the same 
locus and individual. Phased alleles (red text) were retained only in the largest phase block (left).

Heterozygous
Sites

Depth

Phase Blocks

Supercontig 1000 bp 2000 bp

2733 bp

Consensus

Ambiguity

Phased Allele 1

Phased Allele 2

AAGAACCTTGTCACCGGGGACATGTCAGAGCTGAAGGTGT..............

AAGAACSTTGTCACYGGGGAMRTKTCRGAGCTGAAGGTGT..............

AAGAACGTTGTCACCGGGGACATGTCAGAGCTGAAGGTGT..............

AAGAACCTTGTCACTGGGGAAGTTTCGGAGCTGAAGGTGT..............

TGAGTCCCTTATATTCAACAGATTAGTTTGACA

TGAGTCYCTTAYATTCAAYAGAKYAGTTTGACA

TGAGTCYCTTAYATTCAAYAGAKYAGTTTGACA

TGAGTCYCTTAYATTCAAYAGAKYAGTTTGACA

A

B

C

D

E

TABLE 1. Sample information, locus recovery, and statistics for allelic variation for 23 species of Artocarpus and one outgroup. The percentage of longest phase block 
refers to genes that have more than one phase block for that individual. Voucher information for all individuals except MV2 (vouchered in Gardner et al., 2016) can be 
found in Johnson et al., 2016.

Species Subgenus Sample ID No. loci

Loci 
with two 

alleles

Loci with 
>1 phase 

block

Percentage 
longest 

phase block

Genes with deep 
coalescence of 

alleles

Mean Sqrt 
pairwise allelic 

distance

Artocarpus anisophyllus Artocarpus NZ606 111 90 22 75.2% 10 0.0676
Artocarpus brevipedunculatus Artocarpus NZ814 111 89 22 76.0% 4 0.0681
Artocarpus camansi Artocarpus MV2 111 28 1 91.2% 1 0.0548
Artocarpus elasticus Artocarpus EG87 111 77 14 83.0% 4 0.0625
Artocarpus excelsus Artocarpus NZ780 111 81 22 79.2% 4 0.0600
Artocarpus kemando Artocarpus NZ612 111 85 18 78.6% 3 0.0625
Artocarpus lanceifolius Artocarpus NZ739 111 85 15 74.2% 10 0.0711
Artocarpus lowii Artocarpus MWL2 111 62 17 76.2% 2 0.0617
Artocarpus odoratissimus Artocarpus NZ866 111 89 21 72.6% 3 0.0744
Artocarpus rigidus Artocarpus NZ728 111 79 25 77.9% 3 0.0721
Artocarpus sericicarpus Artocarpus NZ771 111 72 20 78.0% 2 0.0644
Artocarpus tamaran Artocarpus EG92 111 91 23 75.9% 4 0.0690
Artocarpus teysmannii Artocarpus NZ946 111 37 6 74.3% 1 0.0644
Artocarpus sepicanus [Artocarpus] GW1701 109 77 27 77.7% 2 0.0712
Artocarpus heterophyllus Cauliflori EG98 111 48 17 71.9% 3 0.0817
Artocarpus integer Cauliflori NZ918 111 91 29 74.1% 1 0.0737
Artocarpus limpato Prainea NZ609 109 81 21 76.2% 0 0.0656
Artocarpus fretessii Pseudojaca NZ929 110 94 22 72.5% 12 0.0774
Artocarpus lacucha Pseudojaca NZ420 111 77 24 78.1% 4 0.0706
Artocarpus nitidus ssp. Lingnanensis Pseudojaca NZ911 111 29 5 83.5% 5 0.0805
Artocarpus peltatus Pseudojaca NZ694 111 90 24 76.3% 7 0.0815
Artocarpus primackiana Pseudojaca NZ687 110 93 27 74.5% 6 0.0734
Artocarpus thailandicus Pseudojaca NZ402 110 69 16 71.7% 23 0.1320
Streblus glaber NA EG78 111 71 26 78.6% 0 0.0623

Note: Based on phylogenetic evidence, Artocarpus sepcianus likely does not belong in Artocarpus subg. Artocarpus (Johnson et al., 2016, this paper)
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Johnson et al. (2016). The target enrichment probes (MycroArray, 
Ann Arbor, MI, USA) were originally designed for 333 single- copy 
loci; however, many of these genes have one or more paralogs, re-
sulting from the whole genome duplication in Artocarpus (Gardner 
et al., 2016). To avoid potential problems with assembling paralogs 
as alleles, we built new assemblies for the present analyses as follows. 
Target- enriched reads from A. camansi Blanco (the same individual 
used for whole- genome sequencing in the original marker develop-
ment (Gardner et al., 2016)) were assembled de novo using SPAdes 
(Bankevich et al., 2012), and genes were predicted using Augustus 
(Keller et  al., 2011), with Arabidopsis Hehyn. as the reference. 
Those genes were annotated using a BLASTn search seeded with 
the HybPiper target file of 458 genes from Johnson et al. (2016). We 
previously demonstrated that a majority of the “phylogenetic” genes 
in the target set (low copy genes, in contrast with high- copy MADS- 
box and volatile genes in the target set) have multiple paralogs in 
Artocarpus due to a whole- genome duplication in the common an-
cestor of the genus (Gardner et  al., 2016). We constructed a new 
target file containing paralogs of each gene (726 total loci) to use for 
HybPiper. Because additional paralog warnings within this set sug-
gested further clade- specific gene duplications within Artocarpus, 
for this study, we chose to focus only on genes that had only one 
copy in Artocarpus: 151 genes that never triggered a HybPiper par-
alog warning for any sample. Paralog warnings are triggered when 
multiple contiguous sequences are assembled within HybPiper that 
each represent more than 85% of the targeted sequence length. 
From among these genes, we selected 111 genes with the outgroup 
present for the analyses presented here.

We assembled four data sets from the sequencing reads: (1) con-
sensus sequences with heterozygous bases called as the nucleotide 
with highest read- frequency (“consensus”), (2) consensus sequences 
with heterozygous bases ambiguity- coded (“ambiguity”), (3) allele 
sequences with read- backed phasing (“alleles”), (4) unphased allele 
sequences (“unphased alleles”) used in SVDQuartets (Chifman and 
Kubatko, 2014) only. All other phylogenetic methods described be-
low were used only for the consensus, ambiguity, and alleles data 
sets.

We used HybPiper to assemble the consensus data set, which 
is the default method of sequencing read assembly implemented 
in HybPiper and is described in detail in Johnson et  al. (2016). 
Briefly, HybPiper sorts reads by target gene and then performs de 
novo assembly of contigs for each gene using SPAdes (Bankevich 
et al., 2012). If more than one long contig is assembled by SPAdes, 
HybPiper chooses among multiple full- length contigs by using a se-
quencing depth cutoff to choose the best full- length contig. If the 
sequencing depth is similar among all full- length contigs, HybPiper 
chooses one based on the percent identity with the reference se-
quence. This method results in a single contig, even if multiple long 
sequences represent alleles (Johnson et  al., 2016). We extracted 
exon sequence and flanking regions for each gene, which were con-
catenated into a “supercontig” using the “intronerate.py” script in 
HybPiper.

We assembled the ambiguity data set using the following steps 
for each sample (the total 726 sequenced genes were used for as-
sembly purposes): (1) We used BWA- MEM (Li, 2013) and Picard 
(https://broadinstitute.github.io/picard/) to generate a duplicate- 
free BAM alignment for each sample separately, using the “super-
contig” sequences generated by HybPiper as a reference, (2) we 
used GATK (McKenna et al., 2010) to identify and call variants, re-
tain SNPs (using a hard filter that ensures SNPs are identified using 

standard quality and depth thresholds) and generate sequences 
with IUPAC ambiguity codes, and (3) for each gene, we gener-
ated separate exon and intron files using annotations created by 
HybPiper (Johnson et al., 2016). (4) We used Macse (Ranwez et al., 
2011) to generate in- frame alignments for exons and used MAFFT 
(Katoh and Standley, 2013) to align intron sequences separately. (5) 
We trimmed exon and intron alignments with TrimAl (Capella- 
Gutiérrez et al., 2009) to remove sites that did not appear in at least 
15 samples and combined the alignments retaining positional in-
formation for gene partitions (Appendix S1A, see Supplemental 
Data with this article).

To assemble the alleles data set, we used WhatsHap (Patterson 
et  al., 2015), a Python- based program for read- backed phasing 
designed for long- reads but appropriate for 300- bp paired- end 
Illumina data. For each sample, we used the BAM alignments gen-
erated for the ambiguity data set to generate a phased VCF file and 
a GTF file containing the locations of phase blocks within each 
gene using default WhatsHap settings. We generated two phased 
sequences for every gene using “bcftools consensus”, but we only 
retained phased sequence in the longest phase block for each indi-
vidual at each gene. The remaining variant sites outside the longest 
phase block were replaced with ambiguity characters (Fig. 1), and 
only one sequence was retained if it was completely homozygous 
for that individual. This method allowed us to retain phased het-
erozygous sites only where backed by read data (i.e., not spanning 
long introns), while retaining the full- length sequence that may 
contain informative sites across species. Our script for processing 
phased alleles, “haplonerate.py” is freely available at www.github.
com/mossmatters/phyloscripts

The final product from the alleles assembly method is one or 
two sequences per individual per gene. If an individual is hete-
rozygous at a given locus, assembly of allele sequences results in 
intra- individual alleles: two alleles (for a gene) from the same in-
dividual. If intra- individual alleles are not sister in a gene tree, we 
refer to this as “deep coalescence of alleles”. Finally, we assembled 
a second version of the alleles data set (“unphased”), which always 
contains two sequences per individual with no ambiguity codes. 
We used this assembly to test whether phasing alleles was appro-
priate for SVDQuartets (Chifman and Kubatko, 2014; described 
next in Phylogenetic analyses), a method where each site is treated 
independently.

Phylogenetic analyses

For the ambiguity, consensus, and alleles data sets, we estimated 
gene trees with RAxML v 8.2.3 (Stamatakis, 2014) using the 
GTR+Gamma model of evolution and 1000 bootstrap replicates. 
We specified separate partitions for (1) first and second codon posi-
tion, (2) third codon position, and (3) intron for each gene.

For the ambiguity and consensus data sets, we performed concat-
enation + maximum likelihood analysis (CAML) on concatenated 
alignments of 111 genes using RAxML with the GTR+Gamma 
model of evolution and 1000 replicates of multilocus bootstrap-
ping. We partitioned the concatenated alignments by gene, codon 
position, and intron (330 partitions per alignment). There is no 
known method for treating the alleles data set in a CAML analysis, 
because alleles would need to be associated across loci into long- 
range haplotypes.

We estimated species trees using four popular summary 
methods that are consistent under the multi- species coalescent: 

https://broadinstitute.github.io/picard/
http://www.github.com/mossmatters/phyloscripts
http://www.github.com/mossmatters/phyloscripts
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ASTRAL II v 4.7.4 (Mirarab and Warnow, 2015), MP- EST v 1.5 
(Liu et  al., 2010), STAR (Liu et  al., 2009b), and SVDquartets 
(Chifman and Kubatko, 2014). We used ML gene trees estimated 
by RAxML (described above) as input for ASTRAL- II, MP- EST, 
and STAR. For each data set, we ran ASTRAL- II multi- locus boot-
strapping (option - g) with 1000 bootstrap replicates (option - r). 
For the alleles data set, we used the mapping option (- a) to map 
alleles in the gene trees to individuals. Because branches with very 
low support in gene trees may cause erroneous topologies in the 
species tree, we also estimated the ASTRAL species trees using 
ML gene trees with branches with less than 33% bootstrap support 
(BS) collapsed using TreeCollapserCL4 (http://emmahodcroft.
com/TreeCollapseCL.html). We could not collapse branches with 
low support for the other species tree methods as they require bi-
furcating trees.

We estimated species trees and performed bootstrap validation 
with MP- EST v 1.5 and STAR on STRAW (http://bioinformatics.
publichealth.uga.edu/SpeciesTreeAnalysis/index.php). Before MP- 
EST and STAR analysis, we rooted ML gene trees and bootstrap 
trees by outgroup using the program pxrr in phyx (Brown et  al., 
2017) and removed branch lengths and support values from the 
trees. We added BS values from the bootstrap consensus trees to the 
species trees manually. For the alleles data set, we used a species- 
allele table to map alleles in the gene trees to individuals.

We estimated SVDquartets trees from concatenated gene se-
quence alignments using SVDquartets analysis in PAUP* ver-
sion 4.0a158 (Swofford, 2002) with exhaustive quartet sampling, 
1000 bootstrap replicates, and the multispecies coalescent tree 
model. For the ambiguity data set, we ran one analysis with 
ambiguity- codes interpreted as distributed and one analysis with 
ambiguity- codes considered as missing data. For the alleles data 
sets, species- membership partitioning was used to assign allele se-
quences to individuals. We also performed SVDquartets analysis 
on unphased allele sequences to determine whether this method 
affects the SVDquartets tree from allelic data. SVDquartets treats 
each alignment position as an unlinked locus, so phasing of SNPs 
across alleles may not be necessary for this type of species tree anal-
ysis. We manually added bootstrap support values from the boot-
strap consensus trees generated by SVDquartets to the SVDquartets 
species trees.

To focus on issues that may arise in phylogeny reconstruction 
in data sets with a high level of deep coalescence of alleles, we per-
formed additional species tree estimation in ASTRAL and CAML 
analysis on a subset of seven genes that had the highest propor-
tion of nonsister intra- individual alleles (20% or higher) in the 
ML gene trees. The identification of these genes is described be-
low, and we performed the ASTRAL and CAML analyses exactly 
as described above for the full data sets (ASTRAL using ML gene 
trees with branches with less than 33% BS support collapsed). We 
estimated “percent resolution” of the resulting trees for each data 
set by collapsing branches in the trees that had <50% BS support 
using TreeCollapser4 ((http://emmahodcroft.com/TreeCollapseCL.
html) and counting the number of bipartitions in the resulting trees 
using the function bitsplits() in the R package ape (Paradis et al., 
2004). We then calculated percentage resolution as the number of 
bipartitions in these trees divided by the number of possible bipar-
titions (two less than the number of tips). For the alleles data set, 
we removed all nodes where the descendants were two alleles from 
the same individual, to avoid overestimating support on these gene 
trees.

Assessing gene tree resolution, topological incongruence,  
and allele coalescence

We used Phyparts (Smith et al., 2015; https://bitbucket.org/black-
rim/phyparts) to assess gene tree discordance and gene tree- species 
tree discordance. Phyparts conducts bipartition analysis across 
a set of trees while allowing for missing data. Phyparts bins gene 
tree nodes into four categories relative to a reference tree, including 
a category for those that inform (conflict or support) a clade but 
have less than 50% bootstrap support. For each clade in the ref-
erence tree, gene trees in this category were not included in our 
comparisons of the number of gene trees concordant with the spe-
cies tree between the consensus and ambiguity data sets. For each 
of the three data assemblies, we ran phyparts using the ASTRAL- II 
species tree (estimated from that data set) as the mapping tree to 
assess discordance among the gene trees. Although we include a 
phyparts analysis of the gene trees estimated from the alleles data 
set, the concordance values are not directly comparable to the other 
data sets for two reasons: (1) To compare gene trees in which all 
allele sequences are tips to a species tree, the species tree must also 
have one tip per allele sequence. Because intra- individual alleles are 
arbitrarily named across gene trees, the only appropriate way to es-
timate a species tree for from multiple alleles gene trees is to map 
alleles to individuals. The alleles ASTRAL- II species tree used for 
the mapping tree is therefore not a real estimation of relationships. 
(2) Any nonconcordance between a gene tree and the ASTRAL- II 
species tree that involves the position of an allele that is not sister to 
its second intra- individual may not be reflective of arbitrary intra- 
individual allele naming. Although any interpretation of phyparts 
results for the alleles data set is severely limited, we include the 
general patterns observed because the incidences of nonsisterhood 
of intra- individual alleles was rare in most gene trees after we col-
lapsed branches with low support (described in results).

Before running phyparts, we rooted gene trees and the mapping 
tree by outgroup using the pxrr program in phyx (Brown et  al., 
2017) and removed branch lengths from the mapping trees. We ran 
phyparts with the - b option set to 33 so that branches with less than 
33% BS support in the gene trees would not be considered. Results 
from phyparts were visualized using phypartspiecharts.py to sum-
marize gene tree conflict on our phylogenies using pie charts. We 
used a second script (minorityreport.py) to generate a “minority bi-
partition” report from the phyparts output that shows the number 
of gene trees supporting each alternative bipartitions. Both scripts 
are freely available under an MIT license available at the website 
www.github.com/mossmatters/phyloscripts.

To summarize the support for hypotheses of Artocarpus rela-
tionships across data sets and analyses, we compared the topologies 
of the 17 species trees and two CAML trees by eye after rooting by 
outgroup using the pxrr program in phyx (Brown et al., 2017). We 
identified an across- analysis incongruence and manually identified 
all various arrangements in areas that exhibited incongruence.

To identify deep coalescence of intra- individual alleles within 
gene trees, we used the Python package ETE3 (Huerta- Cepas et al., 
2016); etetoolkit.org) to calculate how often intra- individual alleles 
were resolved as sister lineages in ML gene trees estimated from the 
alleles data set. When the two intra- individual alleles were mono-
phyletic on a gene tree, we recorded the gene tree bootstrap support. 
When the alleles were not monophyletic, we recorded the support 
from the most highly supported node that prevented the mono-
phyly of alleles. We summarized the support for monophyletic 

http://emmahodcroft.com/TreeCollapseCL.html
http://emmahodcroft.com/TreeCollapseCL.html
http://bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/index.php
http://bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/index.php
http://emmahodcroft.com/TreeCollapseCL.html
http://emmahodcroft.com/TreeCollapseCL.html
https://bitbucket.org/blackrim/phyparts
https://bitbucket.org/blackrim/phyparts
http://www.github.com/mossmatters/phyloscripts
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intra- individual alleles values across samples and loci in a heatmap 
using the Python package seaborn (Waskom et al., 2014). A python 
notebook describing our procedure is available at the website www.
github.com/mossmatters/phyloscripts.

To characterize the level of sequence heterozygosity for each 
individual, we calculated the square root pairwise distance (sqrt 
PWD) between intra- individual allele sequences in each of 111 
gene alignments from the alleles data set using the function dist.
alignment() in the R package seqinR (Charif and Lobry, 2007). For 
homozygotes, we replicated sequence names and sequences in the 
alignments to generate sqrt PWDs of zero. To see whether there was 
an association between the prevalence of deep coalescence of intra- 
individual alleles for a gene or highly heterozygous genes and gene 
tree resolution, we plotted the number of nonsister intra- individual 
alleles in a gene tree and the average sqrt PWD for a gene against 
gene- tree percent resolution. We estimated “percent resolution” of 
gene trees as described above in Phylogenetic analyses.

RESULTS

Assemblies and alignments

We reduced our gene sampling to maximize taxon occupancy; most 
species had all 111 genes present, and the fewest genes any taxon 
had was 109 (Table 1). The gene alignments ranged from 1067 bp 
to 5350 bp with a median length of 2303 bp. The final concatenated 
assembly contained 361,738 bp and had only 71 missing gene/indi-
vidual combinations.

Allele coalescence, sequence heterozygosity, and  
gene tree resolution

Among the 24 individuals, the number of gene trees in which intra- 
individual alleles were not sister (i.e., deep coalescence of alleles) 
ranged from zero to 23 of 111 gene trees, and the average was 4.75 of 
111 gene trees (Fig. 2). Across 111 gene trees, the percentage of non-
sister intra- individual alleles (heterozygous allele pairs not sister in 
the tree/total heterozygous allele pairs in the tree) ranged from 0% 
to 33% and the average was 6.7%. We did not observe an association 
between the proportion of monophyletic intra- individual alleles (in 

the alleles data set) in a gene tree and the gene tree’s percent resolu-
tion (in any data set, Fig. 3).

Among the 24 individuals, the sqrt PWD ranged from 0.055 to 
0.132 and the average was 0.080 (Appendix S1A). Across 111 genes, 
the average (for all individuals) sqrt PWD ranged from 0.037 to 
0.144, and the average was 0.070. We did not observe an association 
between individuals that had high heterozygosity and membership 
in high- conflict/poorly resolved areas of the Artocarpus phylogeny 
(Appendix S1B), nor did we observe an association between a high 
number of heterozygous sequences in a gene tree and the gene tree’s 
percent resolution (Appendix S1C).

The mean percent resolution across gene trees was 77% for the 
ambiguity data set, 78% for the consensus data set, and 86% for 
the alleles data set (Fig. 3). Paired t- tests of gene tree resolution 
among the three assembly methods were not significant. Gene 
tree percent resolution for the alleles data set is somewhat inflated 
because of the contribution of strong support for intra- individual 
allele sisterhood (as many as 12 bipartitions per gene tree) in the 
alleles gene trees.

Levels of gene tree/species tree discordance across  
methods of data assembly

The number of gene trees concordant with the species tree was 
similar for the consensus and ambiguity data sets for most clades 
(Fig.  4A, B). Of the 11 nodes that had a high level of gene tree 
discordance with the species tree (>50% of gene trees discordant 
with species tree), the number of discordance gene trees differed 
between the two data sets by more than five for only two nodes (1 
and 7). For these two nodes and six of the eight remaining “high- 
conflict” nodes, the ambiguity data set had a higher number of 
gene trees concordant with the species tree than did the consensus 
data set.

Comparison of gene tree discordance in the alleles data set to 
the ambiguity and consensus data sets is limited as described in 
methods. We did not make comparisons of alleles gene tree con-
cordance to ambiguity and consensus species trees at high conflict 
nodes 1–7 because these subtend clades that include individuals 
with intra- individual alleles that were nonsister in 10 or more 
gene trees: NZ402 and NZ929. (The other two individuals with 
nonsister alleles in 10 or more gene trees occur in parts of the 

FIGURE 2. Frequency of deep coalescence of intra- individual alleles. Each gene is a column; each row is an individual. The color ranges from light blue 
(100% support for monophyly of intra- individual alleles) to white (0% support) to red (100% support for non- monophyly of intra- individual alleles). 
Homozygous loci are shown in dark blue.
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tree without high gene tree/species tree dis-
cordance.) At high- conflict nodes 16–21 
(subtending clades that include no indi-
viduals with nonsister alleles in more than 
four gene trees) we observed no association 
between the number of gene trees concord-
ant with the species tree and the use of al-
lele sequences for gene tree reconstruction 
(Fig. 4A and B). Numbers of gene trees con-
cordant with the species tree at these nodes 
are either lower, in the middle, or higher 
compared with the consensus and ambigu-
ity data sets. The total number of alternative 
bipartitions found in gene trees was similar 
for each high- conflict node across all three 
data sets; only one node (node 6) had a 
difference in the number of alternative bi-
partitions greater than three between the 
ambiguity and consensus data sets.

Topological incongruence among data 
sets and phylogenetic inference

We assessed incongruence among 19 topol-
ogies resolved by all combinations of data 
sets and phylogenetic analyses: six spe-
cies trees for the alleles assembly data set 
(Appendix S2.1–S2.6), five species trees and 
one CAML tree for the consensus data set 
(Appendix S2.7- S2.12), and six species trees 
and one CAML tree for the ambiguity data 
set. (Appendix S2.13–S2.19). We identified 
four major areas in the Artocarpus phylog-
eny where species’ placement varied among 
the 19 trees (the two most salient detailed in 
Fig. 5, and all four detailed in Appendix S3). 
Hypotheses for Artocarpus evolution are dis-
cussed extensively elsewhere (Williams et al., 
2017). Here, we simplify our descriptions of 
alternative hypotheses to focus on comparing 
results across data sets.

Briefly, the four areas of incongruence 
are (A) the position of subgenus Prainea 
(King) Renner, here represented by A. lim-
pato Miq. (NZ609) (Fig.  5). Prainea occurs 
successively or as a two- member clade with 
A. sepicanus Diels as first- branching taxa to 
the rest of the genus or to a major clade, or 
as first- branching species in different major 
clades. (B) Series Rugosi Jarrett of subgenus 
Artocarpus sect. Artocarpus (Fig.  5) (also 
including A. teijsmannii Miq.), involving 
comparatively shallow nodes. Three species 
(A. tamaran Becc. [EG92], A. sericarpus F.M.Jarret [NZ711], and 
A. elasticus Reinw. ex Blume [EG87]) occur in all possible posi-
tions within the clade. (C) Resolution within subgenus Pseudojaca 
Tréc. (Appendix S3). Four of the six subgenus Pseudojaca species 
[A. dadah Miq. NZ694), A. thailandicus C.C.Berg (NZ402), A. 
nitidus subsp. lingnanensis (Merr.) F.M.Jarrett (NZ911), A. lacu-
cha Buch.- Ham. (NZ420)] occur in every possible position within 

the subgenus; (D) The positions of the allied species A. excelsus 
F.M.Jarrett (NZ780) an A. lowii King (MWL2), which either form a 
clade sister to or a grade before Area B (Appendix S3).

The crown age of the ingroup has been estimated at ca. 40 
Myr, although several subclades contain species splits as young 
as <5 Myr ago (Ma) (Williams et al., 2017). Branches involved in 
incongruent relationships in Area A (crown age ca. 40 Myr) are 

FIGURE 3. Relationship between deep coalescence and gene tree resolution. Resolution is 
measured by the percentage of nodes with >50% support. Gene trees with evidence of deep co-
alescence (non- monophyly of interspecific alleles) are in green; genes without deep coalescence 
are in blue. (A) Pairwise comparisons of gene tree resolutions between methods. (B) Univariate 
kernel density distribution of gene tree resolution for each of the three assembly methods.

Proportion Resolved Nodes
Consensus

4.0

0.0

2.0

4.0

0.0

2.0

4.0

0.0

2.0

6.0

D
en

si
ty

D
en

si
ty

D
en

si
ty

A B

Proportion Resolved Nodes
Ambiguity

P
ro

po
rt

io
n 

R
es

ol
ve

d 
N

od
es

P
ro

po
rt

io
n 

R
es

ol
ve

d 
N

od
es

P
ro

po
rt

io
n 

R
es

ol
ve

d 
N

od
es

A
lle

le
s

A
lle

le
s

A
m

b
ig

u
it

y

Present AbsentGenes with non-monophyly of species’ alleles:

Proportion Resolved Nodes
Consensus

Proportion Resolved Nodes
Ambiguity

Proportion Resolved Nodes
Consensus

Proportion Resolved Nodes
Alleles



 March 2018, Volume 105 • Kates et al.—Allele phasing in Artocarpus • 411

the deepest in the tree, and branches affecting the resolution of 
Area D (crown age ca. 15 Myr) are the next deepest in the tree. 
Branches in Areas B (crown age ca. 15 Myr, but here undoubtedly 
younger than D due to topological differences with Williams et al. 
[2017]) and C (crown age ca. 13 Myr) are at comparably shallow 
depths in the tree and subtend terminal clades and/or one node 
deeper depending on the specific topology resolved. Of the four 
areas of incongruence, only Area C contained samples with high 
rates (>10% of genes) of nonsister alleles (A. thailandicus and A. 
fretessii) (Fig. 2). By contrast, the other two samples with similarly 
high levels of intraspecific deep coalescence (the sister species A. 
lanceifolius and A. anisophyllus, members of a clade with a crown 
age of ca. 13 Myr) were not associated with an area of phylogenetic 
incongruence.

We found slightly more variation in topologies resolved between 
data sets (within each program) than between programs (within 
data sets) (Table 2). In Area A, six arrangements occurred in our 
trees (Fig. 5). Area A was resolved more congruently between the 
alleles and consensus data sets than between either of these and the 
ambiguity data set, and these two data sets resolved trees with gen-
erally higher BS support in this area of the tree. In 16 of 19 trees, 
Prainea was not sister to all other Artocarpus species but was instead 

nested inside the genus, agreeing with the treatment of Prainea by 
Zerega et al. (2010) as a subgenus of Artocarpus.

In Area B, four arrangements of ser. Rugosi occurred in our spe-
cies/CAML trees, but only one arrangement was resolved with high 
BS support (>70%) in more than one tree (Fig. 5). The arrangement 
resolved in the majority of trees was resolved with similar frequency 
by all of the data sets. The consensus data set had the most between- 
analyses congruence in area C, and area C was resolved more con-
gruently between the alleles and ambiguity data sets than between 
either of these and the consensus data set. By contrast with area 
B, this clade was either mostly (Zerega et al., 2010) or completely 
(Berg et al., 2006) sampled for species, depending on the treatment.

In Area C, eight arrangements for subg. Pseudojaca occurred 
in our trees, but only one arrangement was resolved with high 
BS support (>70%) in more than one tree (Appendix S3). This 
most common arrangement was resolved consistently in species 
trees for both the ambiguity and consensus data sets, but there 
was complete incongruence among analyses for the alleles data 
sets; each analysis resolved a different topology. Indeed, four of 
the eight arrangements appeared only in the alleles analyses. Area 
B was resolved more congruently between the consensus and am-
biguity data sets than between either of these and the alleles data 

FIGURE 4. ASTRAL- II trees for Artocarpus. (A) Consensus data set; (B) ambiguity data set; (C) alleles data set with summary of conflicting and concord-
ant gene trees produced with Phyparts. For each branch, the top number indicates the number of gene trees concordant with the species tree at that 
node, and the bottom number indicates the number of gene trees in conflict with that clade in the species tree. The pie charts at each node present 
the proportion of gene trees that support that clade (blue), the proportion that support the main alternative for that clade (yellow), the proportion 
that support the remaining alternatives (pink), and the proportion that inform (conflict or support) this clade that have less than 50% bootstrap sup-
port (black). Numbers in black boxes indicate nodes of interest discussed further in the text. Alternative topologies and the number of gene trees that 
support them can be found in the data repository.
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set. This clade was sparsely sampled in our data set, with only 6 of 
24 species represented.

In Area D, three arrangements for A. excelsus and A. lowii oc-
curred, and two arrangements had high (>70%) BS support in six of 
19 trees (the third arrangement only occurred in one tree and with 
low support) (Appendix S3). The consensus data set had the highest 
among- analyses congruence in this area. Area D was resolved more 
congruently between the ambiguity and allele data sets than between 
either of these and the consensus data set because of the congruence 
between the SVDQ trees for these data sets. This was the only high- 
conflict area in the tree for which the CAML analyses resolved con-
gruent topologies for the consensus and ambiguity data sets.

Comparison of support for relationships reconstructed  
using different data sets

For the four areas of incongruence, we compared the BS support 
across trees for the first- branch if the arrangement varied by first- 
branching species or for the base of the clade if the arrangement 
varied by clade membership (Fig.  5; Appendix S3). (We did not 
compare BS support for areas without high conflict in the tree be-
cause these areas had high support in all trees.)

For the consensus data set, the CAML tree had high BS support 
for the arrangements it resolved in all four high- conflict areas. Each 
ASTRAL tree had high support for the arrangements it resolved in 

FIGURE 5. Summary of species tree conflict between analyses for all data sets for two major regions of incongruence. Left: Table showing incongru-
ence between analyses for all three data sets for Areas A and B. Rows represent topologies, drawn as cartoon trees (or subtrees) at right. Columns 
represent analyses (labeled at bottom) within data sets (labeled at top). Strong support (black) >70%, weak support <70%. No support indicates that 
the topology in question was not recovered. Right: Cartoon trees representing alternative topologies: (A) position of A. limpato (subg. Prainea), with 
other subgenera collapsed; (B) subg. Artocarpus ser. Rugosi. Rearrangements are shown by colored terminal branches within each area.
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TABLE 2. Topological variation among three data sets (A) and within each data set (B) for four areas of species tree incongruence (see Appendix S3). Percentages are 
number of pairwise differences across trees/possible number of pairwise differences across trees; higher numbers indicate greater topological variation.

A. Percentage variation among data sets (within analyses)

Area of incongruence ASTRAL MPEST STAR SVDQ CAML

A 50 50 50 50 100
B 50 50 0 50 100
C 50 50 0 100 100
D 0 50 0 50 0

B. Variation within data sets (among analyses)

Area of incongruence Consensus Ambiguity Alleles

A 60 33 20
B 40 33 20
C 20 33 40
D 20 17 40
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three of four areas (A, C, and D). The MP- EST tree and STAR tree 
each had high support for the topology it resolved for two areas (A 
and D), and the SVDQuartets tree did not have high support for the 
topology it resolved in any high- conflict area.

For the ambiguity data set, the STAR tree had high support for 
the arrangements it resolved in all four areas. The MP- EST and each 
ASTRAL trees had high support for the topology it resolved for two 
areas (A and C), and each SVDQuartets tree had high support for 
the topology it resolved in one area (D).

For the alleles data set, the STAR tree had high support for the 
arrangements it resolved in all four areas. The MP- EST tree, each 
ASTRAL tree, and the SVDQuartets tree estimated from phased al-
lele sequences each had high support for the topology it resolved for 
two areas (MP- EST: A and B; ASTRAL: A and C; SVDQ: C and D), 
and the SVDQuartets tree estimated from unphased allele sequences 
had high support for the topology it resolved for one area (D).

Phylogenetic analysis of genes with high levels of deep 
coalescence

Our data set includes only one individual per species; therefore, 
non- monophyletic intra- individual alleles are, by default, a case of 
deep coalescence. To assess whether using allele sequences rather 
than ambiguity or consensus sequences improves resolution of spe-
cies trees estimated from gene trees in which deep coalescence is 
not rare, we performed species tree estimation using ASTRAL on 
a set of seven gene trees in which more than one in five heterozy-
gous individuals had alleles that were not sister in the gene tree. We 
did not observe better resolution of relationships in the ASTRAL 
species tree estimated from the alleles data set gene trees than in 
the ASTRAL trees estimated from ambiguity and consensus data 
set gene trees (Appendix S2.20–S2.22). The total percent resolution 
of Artocarpus in the ASTRAL species trees estimated from con-
sensus, ambiguity, and alleles assembly data sets was 68% in each 
tree. Percent resolution in the CAML trees reconstructed from the 
consensus and ambiguity assembly data sets was 77% for both trees 
(Appendix S2.23–S2.24; see methods for explanation of “percent 
resolution”).

DISCUSSION

Our understanding of how deep coalescence of alleles and/or high 
levels of heterozygosity may affect phylogeny reconstruction is very 
limited. Phylogeneticists do not always assess heterozygosity in data 
sets and are usually not aware of deep coalescence of alleles because 
allele sequences are not assembled or analyzed. In this study, we 
quantified the amount of deep coalescence of alleles and highly het-
erozygous sequences and asked how these characteristics of a data 
set affect our ability to resolve a phylogeny. To answer this question 
we considered: (1) Do gene trees estimated from genes with high 
levels of deep coalescence of alleles or heterozygosity have lower res-
olution than others? (2) Do highly heterozygous individuals and/or 
those with noncoalescing alleles in gene trees appear to limit reso-
lution in species trees/CAML trees? (3) Does using allele sequences 
instead of ambiguity or consensus sequences resolve any problems 
that may be caused by deep coalescence or high heterozygosity? (4) 
Do phylogenies estimated from allele sequences differ from those 
estimated from “super- contigs” (consensus or ambiguity- coded 
contigs)? In our reconstruction of gene trees, CAML trees, and 

species trees for Artocarpus using sequences assembled with three 
different methods of data assembly, we did not find evidence that 
the answer to any of these questions is yes.

Highly heterozygous genes and individuals do not appear 
disproportionately responsible for low resolution or 
topological uncertainty in gene trees or species/CAML trees

Our finding that highly heterozygous individuals did not influence 
gene tree resolution or disproportionately occur in high- conflict 
areas of species or CAML trees was somewhat surprising. The ab-
sence of a strong influence of heterozygosity on gene tree resolution 
was particularly surprising for the ambiguity data set, as ambiguity- 
coded heterozygous positions have previously been shown to de-
crease phylogenetic resolution (Potts et al., 2014). However, many 
factors influence phylogenetic resolution, and we cannot isolate the 
effect of ambiguity- codes or deep coalescence of alleles using our 
empirical data. In particular, more variable genes are expected to be 
more phylogenetically informative (Small et al., 2004; Duarte et al., 
2010), and high variability among individuals’ sequences increases 
phylogenetic resolution (Parks et al., 2009). Both of these desirable 
characteristics are inextricably linked to the presence of ambiguity- 
codes (in ambiguity- coded data) and the increased possibility of 
non- sisterhood of intra- individual alleles. Our finding that high 
heterozygosity of individuals or gene trees was also not associated 
with improvement in phylogenetic resolution is weakly suggestive 
of these negative effects confounding the positive.

Using allele sequences does not improve phylogenetic 
resolution or produce meaningfully different topologies in 
enigmatic areas of the Artocarpus phylogeny

Our ability to answer questions related to “improving” a phylogeny 
or to comparisons of topologies broadly is limited because we do 
not know the true phylogeny of real (not simulated) data. We also 
looked at differences in topologies that resulted from three meth-
ods of assembling heterozygous sequences, and used three meas-
ures to assess whether any one data set was “better” at resolving the 
Artocarpus phylogeny: (1) bootstrap support in poorly resolved areas 
of Artocarpus evolution, (2) topological consistency across methods 
of phylogeny reconstruction, and (3) amount of gene tree discord-
ance and gene tree/species tree concordance (i.e, topological con-
sistency across gene trees and between gene trees and species trees). 
Although we did find that phylogenies reconstructed from the allelic 
sequences differed from those reconstructed with consensus or ambi-
guity sequences, topological incongruence among methods used for 
phylogenetic analysis and between the other two assembly methods 
was very common. We can only conclude that different methods of 
data assembly and different programs used for analysis yield differ-
ent evolutionary hypotheses in poorly supported areas of a phylog-
eny. This study highlights the uncertainty inherent in estimating the 
phylogeny of closely related species. We found that high statistical 
support at several nodes obscured high gene tree incongruence and 
disagreement among data set assembly and phylogeny reconstruc-
tion methods. In particular, CAML analysis of the consensus method 
of data assembly, likely the most commonly used methods of as-
sembly and phylogenetic analysis, consistently resolved topologies 
with high bootstrap support in high- conflict areas of the Artocarpus 
phylogeny. The use of other data assemblies and other methods of 
phylogenetic analysis revealed topological uncertainty in these areas, 
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and in most cases the topology resolved by the consensus- CAML 
analysis was not the topology resolved by a majority of other analy-
ses. For example, the alleles analyses recovered six topologies for the 
sparsely sampled Area C, none of which were recovered by either 
CAML analysis, even though the two CAML topologies both had 
high support (Appendix S3). This incongruence supports previous 
findings based on simulated and biological data that concatenation 
analyses can result in the wrong tree with high support under some 
conditions (Edwards et al., 2007; Kubatko and Degnan, 2007).

In our comparisons of the topologies of, and support for, poorly 
resolved relationships in Artocarpus, no clear patterns emerged to 
suggest that the use of allele sequences for phylogeny reconstruc-
tion improves phylogenetic resolution relative to the use of one se-
quence per allele. Bootstrap support for high- conflict branches in 
the tree was not higher in the topologies reconstructed using the 
alleles data set than in the other topologies. Gene trees estimated 
from allele sequences were not more concordant than those esti-
mated from the other methods, nor was there more gene tree–spe-
cies tree concordance for the alleles data set.

Deep coalescence of alleles is sometimes cited as a potential rea-
son for poor resolution toward the tips of a phylogeny (Maddison 
and Knowles, 2006). Although there is no clear association between 
the depth of high- conflict branches in the tree and what data set 
best resolves these areas of the phylogeny, the only high- conflict 
area for which the topologies resolved by the alleles data set were 
among the more consistent and better supported topologies was the 
area that involved branches deeper in the tree than the other three 
high- conflict areas (“Area A”).

Limitations of our results—Our finding that the use of allele se-
quences does not improve phylogenetic resolution is novel, but 
its implications are somewhat limited. The extent to which hete-
rozygosity and deep coalescence of alleles affects phylogeny recon-
struction will differ for every phylogenetic data set. Our Artocarpus 
data set only included one individual per species; deep coalescence 
of alleles may be more problematic when resolving relationships 
among intra- species individuals. However, we have almost certainly 
under- sampled the allele pool for each species; deep coalescence in 
Artocarpus may be more pervasive than we observe with one indi-
vidual per species. As described above, we also did not find clear 
evidence that poor resolution in the Artocarpus phylogeny was as-
sociated with sequence heterozygosity. If heterozygous sequences 
are not associated with poor resolution, it is not clear that a more 
biologically accurate assembly of these genes would improve phy-
logenetic hypotheses. However, heterozygosity is expected to limit 
phylogenetic resolution when ambiguity codes are used, as has been 
shown elsewhere (Kates et al., 2017).

While our method for extracting alleles from sequences ob-
tained through targeted sequencing could be applied to any or-
ganism, there are still methodological limitations. Read- backed 
phasing of coding sequences is restricted by the length of reads and 
the length of introns. Truly long- range haplotypes (chromosome 
length) would require long- read sequencing technology or a ref-
erence genome. Our method will also struggle with polyploid taxa. 
Although GATK allows for variant detection at higher ploidy lev-
els, we are not aware of any tools that can create phased haplotypes 
from target enrichment data.

We used biological data rather than simulated sequences for 
this study. As such, we do not know the true phylogeny of the 
study group and cannot determine whether a particular method 

of sequence assembly yields a more “accurate” phylogeny. Instead, 
we compared statistical support for relationships resolved and top-
ological consistency across phylogenetic methods for our various 
data sets. Just as topology depends on the underlying data and the 
analyses, bootstrap support is also the result of a particular data 
set and analysis (Soltis and Soltis, 2003); therefore, comparisons of 
bootstrap support for a topology across data sets or methods are 
not absolute. For example, the data resampled for bootstrapping in 
ASTRAL (Mirarab and Warnow, 2015) are bootstrap gene trees, but 
nucleotide alignment sites are used for bootstrapping by RAxML 
(Stamatakis, 2014). Furthermore, simulation studies have demon-
strated that false positive branches may have inflated multi- locus 
bootstrap support and that true branches often have low support 
(Bayzid et al., 2015).

CONCLUSIONS

We present here a novel pipeline for inferring phased alleles from 
target enrichment data and for systematically evaluating the influ-
ence of locus- assembly methods in species tree resolution. While 
we focused on phylogenetic resolution among species, our method 
could also be used to extract allelic sequences from targeted se-
quencing for population genetic analysis within species or for 
methods of phylogeny reconstruction that use allele frequencies 
(De Maio et  al., 2015). We did not find evidence that the use of 
allele sequences to reconstruct phylogenies offers a clear improve-
ment over other methods of assembling heterozygous sequences. 
The diversity of analyses presented here do show the common is-
sue of across- analysis incongruence, which highlights the problems 
with treating phylogenies as true rather than as evolutionary hy-
potheses, especially in studies where a single method of sequence 
assembly and phylogenetic analysis is used. However, the ability to 
infer phased alleles from target enrichment data presents a num-
ber of exciting opportunities to explore whether or not the minimal 
impact of including alleles in phylogenetic reconstruction that we 
find is universal, or simply limited to this test case. Testing these 
methods using clades of varying age and diversity, increasing the 
sampling of the intraspecific allele pool, and using simulated data 
will all further our understanding of the questions posed here.
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